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Drowned tapered and microlensed single-mode fibers offer significant manufacturing advantages as waveguide couplers. 
However, controlled manufacturing requires a better understanding of beam propagation in such photonics devices. The 
authors investigate the mode transforming properties of drowned tapered and microlensed fiber optics and suggest optimal 
geometries. 
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1. Lightwave modes and gaussian  
    approximations 
 
The introduction of the concept of mode is a 

fundamental requirement for accurate modeling of light 
propagation in fiber optics. In general terms, a propagation 
mode is a self-consistent electric field distribution with the 
specific property that its shape in the trasnsverse direction 
remains constant during propagation. The simplest type of 
mode in free space is the plane wave. However, plane 
waves do not resemble real waves since they have an 
infinite transverse extent and therefore other modes 
limited to the transverse spatial dimension are of higher 
interest. 

 
Fig. 1. Gaussian Beams. 

 

The simplest type of mode satisfying the above 
requirements is the Gaussian mode [1]. Gaussian beams 
contract or expand during propagation, but the amplitude 
profile is only transversally scaled and has a constant – 
Gaussian – shape. Gaussian modes are members of 
families of modes and their number is infinite. The most 
frequently used mode families are Hermite-Gauss and 
Laguerre-Gauss. Within a mode family the Gaussian mode 
is the fundamental mode and during the propagation the 
higher order modes transversally change in proportion to 
that of the fundamental mode. 

For light propagation in a waveguide the self-
consistency condition for a mode is stricter than for free 
space modes. Mode rescaling is not permitted in 
waveguides. An overall phase change per unit length – 
described by the propagation constant β  - and losses or 
gains of total optical power are acceptable. Waveguides 
have finite number of guided propagation modes and the 
intensity distribution of each mode has a finite extent 
around the core of the waveguide. A single-mode fiber has 
only a single guided mode per polarization direction. 
Waveguides also have cladding modes and their intensity 
distributions fill the whole cladding and core regions and 
exhibit substantial propagation losses at the outer interface 
of the cladding [2]. 

Gaussians are radially symmetric distributions with 
electric field variations given by: 
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The Fourier Transform of a Gaussian is also a 

Gaussian distribution and Gaussian source distributions 
remain Gaussian at every point along their propagation 
path. This property is useful in visualizing the field 
distributions anywhere in optical systems. The intensity of 
the field is also a Gaussian: 
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The definition of the size of Gaussians is somewhat 

arbitrary because the Gaussian has no obvious boundaries. 
Figure 1 shows the Gaussian intensity distribution of a 
typical He-Ne laser. The parameter 0ω , called the 
Gaussian Beam Radius, is the radius at which the intensity 
has decreased to 21 e of its value on its axis. Because of 
the unique self-Fourier Transform characteristic of 
Gaussians, the transverse distribution intensity remains 
Gaussian and only its radius ω and the radius of curvature 
of the wavefront R  change with the position z , as shown 
in figure 1. The equations describing the Gaussian Beam 
Radius ω  and wavefront radius R  are: 
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In equations (3) and (4) 0ω  is the Gaussian Beam 

Radius and λ  is the wavelength. The above mentioned 
parameters occur in the same combination in both 
equations and they are often merged into a single 
parameter known as the Rayleigh Range,  Rz  [1] and at 

Rzz = , R  is minimum: 
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Optical fibers have two essential parts: the core and 

the cladding. The core acts as a cylindrical waveguide, 
while the cladding prevents the guided mode from 
interacting with anything outside of the fiber. For a 
constant refractive index difference n∆  between the core 
and the cladding, the mode profile within the core is 
described by the equation [2]: 
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In equation (6), 0J  is the Bessel function of first 

kind, 0k  is the free space wavenumber, and β  represents 
the propagation constant. For ar =  the profile is 
represented by: 
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The function ( )rf  from equation (7) strongly 
resembles a Gaussian for all r  values, provided the mode 
width parameter Gω  is properly chosen. The Gaussian 
approximation described by equation (7) provides a 
convenient single-parameter characterization of the 
fundamental mode for weakly guiding, step index, single-
mode fibers. 

A model of beam to guided-mode coupling requires 
the summation of plane waves to describe the incoming 
beam and the guided mode and cannot be entirely based on 
ray optics since beams of finite sizes are made up of 
combinations of plane waves with different propagation 
directions. Efficient coupling requires overlapping of the 
incident beam profile ( )rfb  and the outgoing mode 

profile ( )rfm . Henry and Verbeek [03] define the 
coupling efficiency as the ratio between the power in the 
guided mode and the power in the incoming beam. If 

( )rfb  and ( )rfm  have the same polarization and 
interface reflection is negligible the coupling efficiency is 
described by the equation: 
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In equation (08), ( )rfb

∗ , ( )rfm
∗  and ∗DFT  are the 

complex conjugates of their respective functions and 
DFT  is the Discrete Fourier Transform. Henry and 
Verbeek equation helps identify the main factors affecting 
coupling efficiency. 

 
 

2. Mode transforming properties in tapered  
    core-cladding single-mode fibers 
  
Several methods are used to manufacture tapered and 

microlensed single-mode fibers. For typical coupling 
applications the taper is shaped on a controlled process by 
drowning the partly melted tip of the fiber [4].  Such 
approaches generate fibers with tapered core and cladding. 
Microlenses with spherical surfaces are also generated in 
the process. The characteristic geometry of a core-cladding 
taper is shown in Fig. 2. 

Manufacturing processes must be able to control the 
geometry of the taper and microlens as a way to control 
the spot size of the coupler. 
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Fig. 2. Tapered fiber geometry. 

 
Analytical modelling of the dependence of the spot 

size on the geometry of the taper requires the following 
approximations: 

• The mode in the fiber taper at any point along the 
taper is equal to the equivalent mode of the 
straight fiber with the same core diameter. This 
approximation is in accordance with the Local 
Mode Theory [3], [4], and requires a gradual, 
adiabatic taper. 

• The analysis accounts for the coupling from the 
core-guided mode to the cladding-guided mode 

• The fundamental fiber mode is represented with a 
Gaussian beam approximation. 

By approximating the fundamental fiber mode with a 
Gaussian radial distribution, the radius of the waist of a 
microlens with a focal distance f and radius r  in image 
space is given by the equation: 
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In equation (09) λ   is the free space wavelength, lω  

is the Gaussian beam radius at the microlens, and lR  is 
the radius of curvature of the wavefront at the lens. The 
focal length f   of the melted fiber lens is given by the 
equation: 
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In equation (10) r  represents the radius and n  
represents the refractive index of the microlens. 

For single-mode fibers the mode radius lω  - defined 

as the radial distance at which the field amplitude is 21 e  
of its maximum - can be approximated by Marcuse’s 
equation [03]: 
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The V Number or normalized frequency is defined by 

the equation: 
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In equation (12) a  is the core radius, cn  the 

refractive index of the core, and cln  the refractive index 
of the cladding. Marcuse’s equation is valid for 
V Numbers between 0.8 and 2.5. 

For a drawn taper it is assumed that the cladding and 
the core radii maintain their initial ratio [04]. To calculate 
the mode radius at a given point on the taper, it is 
necessary to calculate the fundamental cladding-guided 
mode radius, to compare it with the core-guided mode 
radius, and to choose the smaller of the two as the mode 
radius. This is equivalent to assuming that the core-guided 
mode couples completely to the fundamental cladding-
guided mode at the point at which the two mode radii are 
equal. 

Using the notations from Fig. 2 and based on the 
assumption that the cladding and the core radii maintain 
their initial ratio: 
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The core radius at the distance x  from the beginning 

of the tapered region is: 
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Other geometrical parameters of interest are: 
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The core-guided mode radius is calculated with the 

equation: 
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The cladding-guided mode radius is calculated with 

the equation: 
 

( )

( )

( )
L

rxL

L
nxLr

L
nxLr

cl

ccl

ccl

cll
−

⋅

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ −−
+

+

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ −−

+

=

6
2

2
3

2

 

12

879.2

12

619.165.0

λ
π

λ
π

ω
  (19) 

 
 

Fig. 3. Mode radius variation in core-cladding tapers. 
 

The mode radius variation into the taper is represented 
in Fig. 3. As the core-guided mode propagates along the 
taper it first contracts slightly, then spreads into the 
cladding, and gradually couples to the cladding-guided 
mode. It is assumed that the coupling occurs only from the 
core-guided mode to the fundamental cladding-guided 
mode. 

Equation (09) will estimate the spot size accurately, 
unless: 
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The radius of curvature of the Gaussian beam can be 
expressed as: 
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In equation (21) z  is the direction of propagation. 
Introducing (21) into (20): 
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Fig. 4. Spot size variation with taper angle and lens radius. 

 
 
 
3. Taper finite element modelling 
 
Limitations and ambiguities of analytical approaches 

require a more accurate modelling of light wave 
propagation in tapered and microlensed single-mode 
fibers. Numerical solutions to the paraxial approximation 
of the Helmholtz equation for monochromatic waves are 
based on finite difference beam propagation method. By 
restricting the wave propagation to narrow angles and 
neglecting polarization effects, the scalar field assumption 
is valid and the wave equation can be written in the known 
Helmholtz form: 
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For most guided-wave problems, the fastest variation 

of the field φ  is the phase variation due to propagation 
along the guiding axis. Assuming the guiding axis is z , 
this fast variation can be factored out by with the slowly 

varying field ( ) ( ) zkiezyxzyxu
r

,,,, φ= . k
r

 is the 
reference wavenumber and represents the average 
variation of the field φ . It is common practice to express 
the wavenumber in terms of a reference refractive index 
nr  as in nkk rr

0= . Under these assumptions one can write 
the three dimensional Beam Propagation Method (BPM) 
equation: 
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For a given input field   ( )0,, =zyxu , the BPM 
equation (24) describes the evolution of the field in the 
space 0>z . Furthermore, the 3D equation (24) can be 
simplified for 2D by omitting all dependencies on y . 

 
Fig. 5. Taper beam propagation simulation. 

 
The authors investigate core-cladding tapered and 

microlensed devices drown from Corning SMF-28 fiber 
with the following specifications:  

• Mode-Field Diameter MDF at λ  =1550 nm: 
10.4±0.8 µm 

• Core Diameter: 8.2 µm 
• Cladding Diameter: 125.0±0.7 µm 
• Effective Group Index of Refraction at nominal 

MFD: 1.4682 nm 
• Refractive Index Difference: 0.005 
• Numerical Aperture: 0.14 

  
 

Simulation settings: 
 

• Free Space Wavelength: λ  =1550 nm 
• Background Refractive Index: 1 
• Core Refractive Index: 1.455 
• Core/Cladding Refractive Index Difference: 

0.005 
• Profile: Step Index 
• 3D Structure: Fiber 
• Crank-Nicholson Implicit Scheme 
• Simple Transparent Boundary Condition 
• Padé Order: (1,0) 
• Mode Calculation Method: Correlation 
• Cladding Taper Angle: 20π  

• Core Taper Angle: 360π  
• Taper Length: 395 µm 
• Lens Diameter: 13.7 µm 
• Lens Radius: 13.85 µm 

 
Fig. 5 shows the simulated beam propagation on a 

tapered core-cladding single-mode fiber terminated with a 
microlens. Tapering effects – covering the region 1000 µm 
to  1395 µm – are visible on the Contour Map (upper right) 
and Height Coded (bottom) images from Figure 5. The 
evolution of the Gaussian Power Monitors alongside the 
propagation  confirms the validity of the analytical method 
proposed by Barnard and Lit and obtained by employing 
the Local Mode Theory. 

The authors performed the evaluation of the Mode 
Field Radius lω  of a tapered fiber with the above 
specified geometry with an LD 8900R Far Field Profiler 
from Photon Inc. The measurement device is a real time 
scanning pinhole goniometric radiometer. The instrument 
is based on a scanning method where neither the detector 
nor the light source moves, yet the system provides a 
hemispherical irradiance measurement with 0.05 degree 
resolution in the angular direction and sub-degree 
resolution in the azimuthal direction. The measured values 
are: 

 
• min 3.07f mω µ=  

• max 3.49f mω µ=  

• Standard Deviation:  
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Fig. 6. Measured 3D Mode Field profile intensity. 
 

The predicted value mf µω 23.3=  falls between 
the minimum and maximum evaluations and close to the 
mean. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5. Concluding remarks 
 
The finite element approach and the experimental 

results confirm the validity of the analytical methods 
proposed by Barnard and Lit and allow sound 
recommendations regarding optimal geometry for tapered 
microlensed single-mode fibers. 

The spot radius is independent of the radius of the 
lens for a well defined range of taper angles and the result 
is important for manufacturing. 
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